Quick Questions 20 Nonparametric Hypothesis Testing of Nominal Data

I. Place the number of the formula or expression next to the concept it defines.

Α.	$\chi^2 =$	5
,	^ _	

B. Expected frequency f_e must be 3

C. f_e for a contingency table equals 2

D. Chi-square is the ratio of 1

E. df for use with a contingency table 6

F. df for a goodness of fit problem __4_

1.	$(n-1)s$ to σ^2	4.	k - 1
2.	$\frac{f_r \times f_k}{n}$	5.	$\sum \left[\frac{(f_0 - f_\theta)^2}{f_\theta} \right]$
3.	≥ 5	6.	(r - 1)(c - 1)

II. Last year, 40% of Linda's customers rented 1 tape, 30% rented 2 tapes, 20% rented 3 tapes, and 10% rented 4 or more tapes. Below is last week's tape rental distribution for Linda's stores. Using the 5-step approach to hypothesis testing, test at the .05 level of significance whether there has been a change in the distribution of tape rentals. Each expected frequency will be the total of 1,000 observations multiplied by last year's appropriate percentage.

	Tape Rental Analysis						
	Observed Frequency (f _o)	Expected Frequency (f _e)	(f _o - f _e)	$(f_o - f_e)^2$	$\frac{(f_0 - f_e)^2}{f_e}$		
1 tape	300	.4 x 1,000 = 400	-100	10,000	25.00		
2 tapes	250	.3 x 1,000 = 300	-50	2,500	8.33		
3 tapes	250	.2 x 1,000 = 200	50	2,500	12.50		
4+ tapes	_200	.1 x 1,000 = <u>100</u>	100	10,000	100.00		
Totals	1,000	1,000			$\chi^2 = 145.83$		

1. H₀: defects follow Linda's distribution.

H₁: defects do not follow Linda's distribution.

- 2. The significance level is .05.
- 3. Chi-square is the test statistic.
- 4. The decision rule:

If χ^2 from the test statistic is beyond the critical value, the difference is significant, reject the null hypothesis.

5. Apply the decision rule.

$$df = k - 1 = 4 - 1 = 3 \rightarrow \chi^2 = 7.81$$

Reject H_o because 145.83 > 7.81. Last week's distribution does not follow last year's distribution.

III. Is Linda happy with these test results? Why?

Yes. Customers are renting tapes for a longer period than last year. Other things being equal, this means more sales revenue and more profit.